Existence of Nonnegative Solutions for Semilinear Elliptic Equations with Subcritical Exponents
نویسندگان
چکیده
where Ω is a bounded domain in R , N ≥ 3, with a smooth boundary ∂Ω and f : Ω× R× R → R. The existence of positive solutions to (1.1) in the case where f depends only on u and grows subcritically has been studied extensively in recent years (see the review article by Lions [3] and the references therein). In this paper, we establish the existence of nonnegative solutions to (1.1) where f has a subcritical growth in u and at most linear growth in ∇u. Aside from the above we do not make any other assumptions on the domain Ω. Our results imply, for instance, the existence of nonnegative solutions to { ∆u = −λu− ∑m j=1 cju pj − b|∇u| − h(x), x ∈ Ω, u = 0, x ∈ ∂Ω,
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملComputation of radial solutions of semilinear equations
We express radial solutions of semilinear elliptic equations on Rn as convergent power series in r, and then use Pade approximants to compute both ground state solutions, and solutions to Dirichlet problem. Using a similar approach we have discovered existence of singular solutions for a class of subcritical problems. We prove convergence of the power series by modifying the classical method of...
متن کاملSemilinear fractional elliptic equations with gradient nonlinearity involving measures
We study the existence of solutions to the fractional elliptic equation (E1) (−∆)u + ǫg(|∇u|) = ν in a bounded regular domain Ω of R (N ≥ 2), subject to the condition (E2) u = 0 in Ω, where ǫ = 1 or −1, (−∆) denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions for problem (E1)-(E2) when g is ...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007